Hamiltonian estimation in semiconductor spin qubits

<u>Jeroen Danon¹</u>, Jacob Benestad¹, Fabrizio Berritta², Torbjørn Rasmussen², Jan Krzywda⁴, Joost van der Heijden⁵, Federico Fedele^{2,6}, Saeed Fallahi^{7,8}, Geoffrey Gardner⁸, Michael Manfra^{7,8,9,10}, Evert van Nieuwenburg⁴, Anasua Chatterjee^{2,3}, Ferdinand Kuemmeth^{2,5}

 ¹Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, Norway
²Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Denmark ³QuTech and Kavli Institute of Nanoscience, TU Delft, The Netherlands
⁴Lorentz Institute and Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
⁵QDevil, Quantum Machines, Denmark
⁶Department of Engineering Science, University of Oxford, United Kingdom

⁷Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA ⁸Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA ⁹Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA

¹⁰School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA

In this talk, I will present some progress we made in developing adaptive Bayesian techniques tailored for estimating slowly fluctuating Hamiltonian parameters. Taking the capabilities of state-of-the-art FPGA-based control hardware as a boundary condition, we explore strategies for efficient Hamiltonian estimation [1], including the potential use of on-chip neural networks and taking into account the physics of the fluctuating parameters. The simplified adaptive scheme we develop is memory efficient and can bring more than an order of magnitude improvement in estimation accuracy compared to the standard approach. We also made the first steps in using such Bayesian estimation protocols in experiment to track the slowly fluctuating Overhauser gradient in singlet-triplet spin qubits, showing indeed clear improvement in estimation quality when using adaptive and physics-informed methods [2,3].

- [1] J. Benestad, J. A. Krzywda, E. van Nieuwenburg, and J. Danon, SciPost Phys. **17**, 014 (2024).
- [2] F. Berritta, T. Rasmussen, J. A. Krzywda, J. van der Heijden, F. Fedele, S. Fallahi, G. C. Gardner, M. J. Manfra, E. van Nieuwenburg, J. Danon, A. Chatterjee, and F. Kuemmeth, Nat. Commun. **15**, 1676 (2024).
- [3] F. Berritta, J. A. Krzywda, J. Benestad, J. van der Heijden, F. Fedele, S. Fallahi, G. C. Gardner, M. J. Manfra, E. van Nieuwenburg, J. Danon, A. Chatterjee, and F. Kuemmeth, Phys. Rev. Applied **22**, 014033 (2024).