Recent Progress in Electron-on-Neon Qubits
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Electron-on-neon (eNe) qubits are emerging solid-state qubits. We previously demonstrated
their strong coupling with microwave photons in a niobium (Nb) superconducting resonator
and long-coherence high-fidelity single-qubit performance [1,2]. Here we report our recent
progress toward two-qubit entanglement and in-depth investigation of charge decoherence.
(Fig. 1.) With a superconducting resonator made of 30nm high-kinetic-inductance titanium
nitride (TiN) films, we have improved the electron-photon coupling strength by 5 times into the
10-20 MHz range. The qubit coherence time has been extended to 120us through dynamic
decoupling (DD). These results pave the way toward strong-dispersive coupling between two
eNe qubits for the realization of two-qubit gates. We further mapped the charge noise
spectroscopy of eNe qubits via the DD technique. The measured charge noise on a single
qubit biased away from its charge sweet spot shows a 1/f'® frequency dependence in the 10*
— 10° Hz range. Its absolute charge noise spectral density is orders of magnitude smaller than
some semiconductor qubits. Furthermore, temperature dependence of the qubit coherence up
to 500mK indicates a decrease in the dephasing time Ty dominated by thermal photons. The
relaxation time T4 shows a slower decay compared to superconducting transmon qubits that
are limited by two-level-system (TLS) fluctuators in the junctions, suggesting that solid Ne
provides a cleaner environment at elevated temperatures.
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Fig 1. (a). TiN superconducting resonator for eNe qubit. (b) eNe trap. (c) Schematic of the eNe trap
cross-section. (d) Noise spectroscopy of eNe qubit. (e) and (f) Temperature-dependent Ty and T;.
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