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Semiconductor spin qubits have the potential to leverage existing industrial transistor 
technology for large-scale quantum circuits. Central to today’s semiconductor industry are 
metal-oxide-semiconductor (MOS) structures. Advanced manufacturing techniques now 
enable the integration of billions of transistors onto a single chip. Achieving scalability in 
quantum systems will depend on harnessing the sophisticated nanofabrication capabilities of 
the CMOS industry. 

Holes in quasi-one-dimensional (1D) nanostructures are particularly promising for 
implementing fast and coherent qubits. The mixing of heavy- and light-hole states due to the 
1D-confinement results in an unusually strong and electrically tunable direct Rashba spin-
orbit interaction (SOI) [1], with sweet spots for charge and hyperfine noise [2], enabling ultra-
fast hole spin qubits with reduced sensitivity to noise [3]. Conveniently, such a 1D-system 
can be realized using today’s industry-standard transistor design, known as the fin field-
effect transistor (FinFET). Adapting FinFETs for quantum dot integration [4] could 
significantly accelerate the scale-up of quantum computers by building on decades of 
semiconductor industry advancements. 

In this talk, I will present our work on hole spin qubits in silicon FinFETs, focusing on the 
spin-orbit physics. The strong SOI not only enables fast, all-electrical spin control - even at 
temperatures well above 1 Kelvin [5] - but also leads to a remarkably anisotropic exchange 
interaction [6]. Consequently, the exchange Hamiltonian no longer has the Heisenberg form 
and can be engineered such that it enables two-qubit controlled rotation gates without 
compromising speed or fidelity. The SOI also facilitates phase-driving of hole spin qubits at 
frequencies orders of magnitude lower than the qubit frequency [7].  

Moving towards a scalable spin qubit architecture, I will discuss how capacitive crosstalk 
complicates gate-based dispersive sensing of spin qubits [8] and how this challenge can be 
overcome [9]. Furthermore, I will share our strategy for achieving greater uniformity and 
reproducibility in device fabrication, as well as how we have accelerated the device design-
fabrication-measurement cycle using our in-house built cryogenic probe station [10]. 
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