Superconductor-semiconductor hybrid circuits on a germanium 2DEG platform

Anasua Chatterjee

QuTech and Kavli Institute of Nanoscience, Delft University of Technology Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen

Hole spin qubits in strained planar germanium quantum wells (Ge/SiGe) have emerged as a promising qubit candidate for quantum information processing and simulation. Recently, hard-gapped superconductivity has been engineered for the first time in Ge/SiGe, in a wide range of mesoscopic devices. The demonstration of an isotopically purifiable semiconductor platform that can host clean superconductivity places Ge/SiGe in a uniquely advantageous position, facilitating many opportunities for hybrid superconducting-semiconducting quantum dots, including high fidelity two-qubit gates, extended range qubit-qubit coupling without the need for resonators, and integration with circuit QED. I will describe our progress toward these goals, including the demonstration of a nanoscale quantum dot proximitized via a PtGeSi superconductor.