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Spin qubits in quantum dots are attracting significant interest as building blocks for scalable 
quantum processors. Semiconductor holes possess a strong intrinsic spin-orbit interaction 
which enables fast all-electrical spin control via electric-dipole spin resonance (EDSR) using 
local gate electrodes to both confine and control the hole spins [1]. They also offer rich spin 
physics, due to spin-3/2 nature of holes and the interplay between quantum confinement, 
non-uniform strain fields, spin-orbit interaction, and external magnetic fields.  

Here I present our results on hole spin qubits fabricated in industry standard planar silicon 
MOS structures [2,3], using electrostatic gates to define the quantum dots and control the 
inter-dot tunnel coupling. These devices can be operated in two modes:  
(i) using two holes in adjacent quantum dots we define a single ‘singlet-triplet’ qubit and 

have demonstrated coherent operations with T1 times of 10µs, singlet-triplet 
oscillation frequencies up to 400 MHz, and coherence times up to 600 ns (enhanced 
to 1.3µs with refocusing techniques) [4].  

(ii) (ii) We can also use the same architecture to operate a two qubit system where the 
individual spin states in each dot are controlled with microwave pulses applied to a 
gate electrode. For these ‘spin-orbit’ qubits we demonstrate Rabi frequencies 
reaching 20 MHz and controllable two-qubit exchange at ~40 MHz. 

Importantly many of these results were obtained with devices fabricated on a 300mm wafer 
compatible with foundry-based fabrication processes [3], affirming industrially fabricated 
planar MOS silicon quantum dots as a platform for high quality spin qubits. 
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Fig.1. a) False-colour SEM image of the device, where the quantum dots are formed under the 

plunger gates P1 and P2, with confinement provided by the barrier gates B1, B2 and the C-gate. 
An adjacent single-hole transistor is use for charge sensing and readout. b) Charge stability 
diagram in the few-hole, weakly-coupled regime where spin readout is performed. c) Rabi 

oscillations as a function of frequency detuning showing a typical chevron pattern. 


