Hole Spin Qubits in Planar Silicon CMOS

Alex Hamilton

UNSW Sydney, Australia

Spin qubits in quantum dots are attracting significant interest as building blocks for scalable quantum processors. Semiconductor holes possess a strong intrinsic spin-orbit interaction which enables fast all-electrical spin control via electric-dipole spin resonance (EDSR) using local gate electrodes to both confine and control the hole spins [1]. They also offer rich spin physics, due to spin-3/2 nature of holes and the interplay between quantum confinement, non-uniform strain fields, spin-orbit interaction, and external magnetic fields.

Here I present our results on hole spin qubits fabricated in industry standard planar silicon MOS structures [2,3], using electrostatic gates to define the quantum dots and control the inter-dot tunnel coupling. These devices can be operated in two modes:

- (i) using two holes in adjacent quantum dots we define a single 'singlet-triplet' qubit and have demonstrated coherent operations with T1 times of 10us, singlet-triplet oscillation frequencies up to 400 MHz, and coherence times up to 600 ns (enhanced to 1.3µs with refocusing techniques) [4].
- (ii) (ii) We can also use the same architecture to operate a two qubit system where the individual spin states in each dot are controlled with microwave pulses applied to a gate electrode. For these 'spin-orbit' qubits we demonstrate Rabi frequencies reaching 20 MHz and controllable two-qubit exchange at ~40 MHz.

Importantly many of these results were obtained with devices fabricated on a 300mm wafer compatible with foundry-based fabrication processes [3], affirming industrially fabricated planar MOS silicon quantum dots as a platform for high quality spin qubits.

Fig.1. a) False-colour SEM image of the device, where the quantum dots are formed under the plunger gates P1 and P2, with confinement provided by the barrier gates B1, B2 and the C-gate. An adjacent single-hole transistor is use for charge sensing and readout. b) Charge stability diagram in the few-hole, weakly-coupled regime where spin readout is performed. c) Rabi oscillations as a function of frequency detuning showing a typical chevron pattern.

- [1] D. V. Bulaev and D. Loss, Phys. Rev. Lett. 98 (2007); R. Maurand *et al*. Nat Commun. 7, 13575 (2016); H. Watzinger *et al*. Nature Commun. 9, 3902 (2018); N.W. Hendrickx *et al*. Nature 577, 487 (2020); F.N.M.. Froning *et al*. Nat. Nanotechnol. 16, 308 (2021).
- [2] Ik Kyeong Jin *et al*, Nano Letters 23, 1261 (2023); S.D. Liles *et al* Nature Commun. 9, 3255 (2018).
- [3] R. Li et al., 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 38.3.1-38.3.4, doi: 10.1109/IEDM13553.2020.9371956; N. I. D. Stuyck et al., 2021 Symposium on VLSI Circuits, Kyoto, Japan, 2021, pp. 1-2, doi: 10.23919/VLSICircuits52068.2021.9492427.
- [4] S.D. Liles et al, Nature Communications (in press 2024; arXiv:2310.09722).